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Abstract

Market area models determine the optimal size of market for a facility. These
models are grounded in classical location theory, and express the fundamental trade-
off between economies-of-scale from larger facilities and the higher costs of transport
to more distant markets. The simpler market area models have been discovered
and rediscovered, and applied and reapplied, in a number of different settings. We
review the development and use of market area models, and formulate a General

Optimal Market Area model that accommodates both economies-of-scale in facili-
ties costs and economies-of-distance in transport costs as well as different market
shapes and distance norms. Simple expressions are derived for both optimal mar-
ket size and optimal average cost, and also the sensitivity of average cost to a
non-optimal choice of size. The market area model is used to explore the impli-
cations of some recently proposed distance measures and to approximate a large
discrete location model, and an extension to price-sensitive demands is provided. i ' 1
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1. Introduction

The two most fundamental concepts in the field of spatial analysis for facilities

planning are, first, the location of the facility, and second, the size, or correspond-

ingly the market area, of the facility. Many papers have dealt with the issue of

facility location; among the several excellent recent surveys of models of this type

are those by Francis, McGinnis and White [33]; Hansen et al. [48]; and Hansen,

Peeters, and Thisse [49]. Such models typically produce facility sizes and market

areas as an integral part of their analysis.

Here we argue that an equally central approach is to focus directly on the issue

of facility size and market area under simplified assumptions about the topology

and density of the demand space. Models of this type typically assume, perhaps

as an approximation, that demand is spread uniformly over an infinite plain, and

then derive the optimal facility size and market area, with the question of the

determination of precise locations for the facilities left for subsequent analysis. One

can protest that this assumption about demand is totally unrealistic, and therefore

that such models are of little or no interest. However, an important and emerging

counterview is that simple models of this type, which can provide fundamental

insights into the nature of the spatial problem, are valuable complements to large,

complex, and more realistic models 136,46,73]. The simple market area model has

characteristics very similar to those of the familiar economic order quantity (EOQ)

model, and we believe that it should occupy the same position in the area of spatial

analysis that the EOQ model occupies in the field of inventory and production

planning [44].

The current position of the market area model in the field of spatial analysis

might best be described as obscure, and its origins are less than clear. The three

surveys cited above, which include continuous-space models, do not mention it.

One recent paper, which uses such a model to plan the sizes and locations of

solid waste transfer-stations, refers to the approach taken as the "non-traditional

analytical viewpoint" [99, p. 107]. But this approach, which involves the averaging

of demand over the corresponding area and then using the size calculated from a

market area model to estimate the number of facilities required, dates back at least

thirty years [14,15] and has been used in developing countries for at least twenty

years [30]. Perhaps the following statement by Newell [73, pp. 359-3601 provides

an explanation for this obscurity:
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It is not fashionable to communicate the tricks of the trade through the
published literature or even in the classroom; they are transmitted via

the casual comment, the informal discussion, or the lecture by an artist

who can compress into an hour lecture the essence of a book. By the
time one finds a use for some trick, one has long since forgotten where

he learned it.

Thus these models have been discovered and rediscovered, and applied and reap-
plied, and each rediscovery and reapplication invariably misses some of the full

power of the models.

The applications of market area models go far beyond the basic calculation of
facility sizes, which can be quite complex for some service systems [91,96]. In the
field of operations research, such models have been used to interpret and guide
the use of large integer programming location models [36,37]. In transportation,

they have been used to estimate the benefits from transportation improvements

[69]. And in economics, they have provided a theoretical base for deriving the

form of relationships used in empirical investigations of the costs associated with
non-optimal capacities [32,80,81,93,94]. If one extends the market area model to
include demand that is elastic with respect to price, prices can be determined

jointly with the facility size and market area. Beginning from the model of Mills

and Lay [68] and its antecedents, there is an extensive body of literature dealing
with spatial pricing policies and equilibrium market areas under various definitions
of competition. Surveys of much of this literature have been provided by Beckmann

and Thisse [9], Dorward [24], Eaton and Lipsey [26], and Greenhut [40].

In this paper we review the antecedents, development, and occurrences of the
market area model, and then present a somewhat more general version of the model
encompassing many variations that may be defined by specifying different assump-
tions about the shape of the market, the distance norm, the facility cost function,

and the tranaport cost function. Parameter-invariant and sensitivity analysis prop-
erties of the model are examined. We then show how these models may be used to
investigate some of the implications of several new distance norms that have been
proposed recently, and explore the use of this type of model as an approximation
to large discrete location models.

The models examined in the body of the paper will be restricted to those that
assume price-inelastic demands and minimize unit costs, for it is this type of model
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that seems to have been used in operational, as contrasted with theoretical, analyses.

However, we show in Appendix B how the cost-minimizing model can be related to
some of the spatial pricing models provided in the economics literature.

2. The Market Area Model In Perspective

The simplest version of the market area model is based on the following as-

sumptions:

(a) Demand is distributed uniformly over an infinite plain, with density D > 0 per
unit area.

(b) The cost for a facility producing the amount w is k + cw, where k > 0 is the
fixed cost for the facility and c > 0 is the variable facility and production cost
per unit.

(c) Unit transport costs are proportional to the distance traveled, at the rate t > 0
per item per unit distance.

(d) The market area to be served is circular, with radius R, and the facility is to

be located at the center of the market.

(e) Distances are measured according to the Euclidean norm.

(f) Subject to assumptions (a) - (e), the average cost per unit of demand (or per
unit area) is to be minimized.

Under these assumptions, the facility size w is determined by the area of the

market, A:

w = AD = ?rDR2 . (2.1)

Total costs for the facility are

k + cw + t(21rrD)rdr

= k+ cw + 27rtDR

= k + cw + lt(7rD)-1 /2 w S/ 2 .

3



Average cost per unit of demand is

kw- ' + c + ;t(wD)-1 /'w'/2 .

Since c has no influence on the minimum, we seek to minimize

C(w) = kw- 1 + !t(irD)-1/2W1 / 2.  (2.2)

The average unit cost expression C(w) in (2.2) is of the form

C(W) = cIw' + C2WV2 ,

and from Appendix A, (A.8) and (A.10), we have the optimal solution values

= (3k) 2 /3 (rD) 1/3  (2.3)
and c,' 3'

C(w) = (3t 2k) 1/3 
(2.4)

From (2.1) and (2.3) we have

A w-D /3 3k)/ (2.5)

and 3) I
adR'= U / (2.6)

\2rtD/

The implications of (2.3) - (2.6) for the sensitivity of the solution to the var-

ious parameters are evident. In particular, except for A* all results are relatively

insensitive to the demand density D.

A further sensitivity result expresses the relative impact on average unit cost of

a non-optimal choice of w. From (A.11) in Appendix A, we have

C(w)_ 1 r) \ 1/2l

C(w*) 3 I 2 W-JI (2.7)

The quite remarkable result (2.7), which is independent of the individual cost and

demand parameters, is equivalent to the "Cost vs. Number" relationship given by

Geoffrion [37].

Another noteworthy characteristic of the optimal cost in (2.4) is that the optimal

value of the average transport cost, expressed by the second term in (2.2), is always
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exactly twice the optimal value for average fixed cost, given by the first term in

(2.2). Again, this property is independent of the cost and demand parameters (see

(A.6) in Appendix A). This result seems to have been noted first by Bos [13, p.
33], and has been derived in a more general context by Starrett [84, p. 433].

A precise origin for this simplest market area model seems to be difficult to

assign. Assumption (a) has been employed by Lsch [60] and his predecessors, and

models of this sort often are called "LTschian." But L6sch was concerned with

price-sensitive demands and more general equilibrium properties, and did not give

a specific formulation of this type. Two early comprehensive studies on locational

analysis, both published in 1956, do not mention such a model [38,52].

Early instances of the expression (2.3) for optimal facility size appear in papers

by Bowman [14] and Bowman and Stewart [15]. These authors apparently did

not derive the complete formal model. Instead, they hypothesized the form of

the relationship in (2.2) and then estimated the coefficients of w 1 and wl/2 by

regression. This, of course, is an eminently reasonable approach when one has data

and is uncertain about the precise nature of market shapes, distance norms, etc.

The estimated relationship then was minimized to obtain the equivalent of (2.3).

The most comprehensive of the early derivations of this model is that of Bos

113], who considers other market shapes as well. An early derivation from a Polish
source is given by Mycieiski and Trzeciakowski [72]. An even earlier derivation

of optimal dairy product supply areas is given by Olson [751 for a more general

facility cost function; Olson also discusses the case of a hexagonal market shape.

The problem of finding an optimal supply area, where dispersed raw materials or

agricultural products are transported to a central processing facility, is, of course,

equivalent to the market area problem if assumptions corresponding to (a) - (f)

are made. Applications of this type of supply area model seem to be quite common

[1,21,34,53,98].

As a part of more extensive studies, additional derivations of this simple market

area model appear in papers by Learner [58], Newell [73], and Capozza and Van

Order [17]. Mohring and Williamson [69] have developed the model with the same

more general facility cost function used by Olson 175]. As a colleague has suggested,

this model may be one of those for which rederivation is a more efficient strategy

than a search through the rather diffuse literature in which the model has appeared.

But such rederivations invariably seem to miss some of the solution characteristics
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given above.

An obvious shortcoming of the simple model is the restriction to circular market
areas, since circles cannot cover an infinite plain without gaps or overlapping. The
question of the configuration of the boundary between neighboring centers of pro-
duction is even older than the market area problem, evidently dating back almost

a century and a half [821. Many authors have explored this topic subsequently.
Some of the earlier writings are collected in [22], and more recent work on defining
market area boundaries appears in papers by Eaton and Lipsey [28], Hanjoul and
Thill [47], Keeney [54], Lowe and Hurter [64], and Von Hohenbalken and West 187].
Boundaries between service facilities have received special attention [19,57]. Of
the most recent work in this area, that of Beckmann and Puu on continuous flow

systems offers especially provocative insights into market boundaries [6,8,79].

Given the assumptions we have made of uniformity in the distribution of demand
and identical costs for facilities, one is led naturally to consideration of space-filling
regular polyhedra as market shapes: triangles, squares or diamonds, and hexagons.
Regular hexagons, in particular, have been shown to be the most efficient mar-

ket shapes for the Euclidean distance norm [2,11,12,39,60,861. However, for other
distance measures such as the rectilinear norm, or "Manhattan metric," diamond-
shaped market areas are more efficient [34,57). Triangular market areas seem to be -

of little interest, and we shall not consider them further.

In the spatial pricing literature, much attention has been devoted to hexagonal
market areas with rounded corners, since in some cases delivered prices near the
extremities of the market area can be so high that demand is reduced to zero

[3,4,23,35,39,41,42,43,50,70,85]. However, this refinement is not relevant to the

unit-cost-minimizing models addressed here.

Several authors have examined the modified simple market area model with

assumption (d) changed to a hexagonal or square market shape, with the other
assumptions remaining unmodified [13,58,73]. Such a change alters only the coef-
ficient of w0/ 2 in (2.2), and the general properties of the model remain the same.

The modified versions of the model turn out to be special cases of the more general
model presented in the following section, and we shall examine them after that

model is developed.
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3. The General Optimal Market Area Model

To extend the applicability of the market area model, we present here a more

general version of the simple model discussed in the previous section. The intent

is to provide a model that is as general as possible while still retaining the use-

ful properties found for the simple model. I. e., we desire single-term closed-form

expressions for the optimal facility size w* as in (2.3) and the optimal unit cost

C(w') as in (2.4), and the same type of sensitivity result as expressed by (2.7).

This requires that the average unit cost expression for the general model be of the

form

C(w) = CILW' + c2w",

where a, < 0 and a2 > 0, and CI, C2 > 0.

To define the General Optimal Market Area (GOMA) model, we modify as-

sumptions (b) - (e) to the following:

(b') The cost for a facility producing the amount w is kw* + cw, where k > 0,

0 < a < 1, and c > 0. Thus a = 0 corresponds to the original assumption

(b). (As in the simple model, the variable cost c does not affect the solution,

and so we shall not consider it further in the body of the paper.)

(c') Unit transport costs are related to the distance traveled, r, by the expression

tr, where t > 0 and P3 > 0. Thus P = 1 specifies the original assumption (c).

(d') Various regular two-dimensional market shapes may be specified, with the

following letter codes designating those investigated here:

C circle

H regular hexagon

S square
D diamond (a square rotated 450).

For each of these shapes, the facility will be located at the center of the

market.

(e') Various distance measures may be designated. These include the following

cases of the general 4p norm:
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M "Manhattan metric" (ti) distance

E Euclidean (t2) distance.

Other norms will be introduced in Section 4.

To specify an instance of the General Optimal Market Area model, we use the

form COMA (a, ,a,d), where a and 0 are the values of the exponents in (b')

and (c') respectively, a denotes the market shape code in (d'), and d denotes the

distance norm in (e). Thus COMA (0, 1, C, E) is the simple market area model

examined in Section 2. If the symbol "*" appears in the position for a or d, the

property or formula is valid for all cases of s or d.

The isoelastic facilities cost function in (6') is a form well-established by em-

pirical studies for a variety of processes and industries, and can be derived from

the physical relationships embodied in many processes [45]. It has been used in a

market area model by Mohring and Williamson [69], who derived the COMA (a,

1, C, E) model (see also [30]). Olson (75] has derived the same model in a supply

area context. The isoelastic transport cost function in (c') with 0 < '3 < 1 allows

for economies-of-distance in transport costs as suggested by Hansen, Peeters, and

Thisse [49, pp. 229--230]. Although the model allows P > 1, it seems unlikely that

this case would occur in reality since then a series of linked short trips would be

preferred to a single trip for the entire distance covered, and the effective transport

cost function would reflect this choice.

For the COMA (a, P, C, E) model, total costs for the facility are

kwa + j t(27rrD)r/dr

= kwo + 2-

= kw+ 2t _|
2+)3

since w = irDR2 from (2.1). Average cost per unit of demand is

C(w) = kw -' + 2t (7rD)-1/2wOI2 (3.1)
2+/3

which, for a = 0 and/3 = 1, provides (2.2). Observe that (3.1) may be written in

the form C(w) = kw*-' +a(#,s, d)t (D) /2 (3.2)
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where
o(r, C, E) 2+- /

2 +

is a "configuration factor" reflecting the market shape 8, the distance metric d,
and the transport cost exponent P. The form (3.2) expresses the average unit cost
for any GOMA (a, f,s,d) model with a regular two-dimensional market shape,
provided that o(#, a, d) can be evaluated. Since w/D defines the area of the market,

a (1, a, d) gives the average distance to demand points from the market center for

a market of unit area, as is evident from (3.2). We shall return to the evaluation
of some specific o(#, a, d) after developing the properties of the cost-minimizing

solution for (3.2).

From Appendix A, (A.8) and (A.10), we obtain the optimal solution values

O [2(1 - a)kDP/" 2 1 (3.3

l tu(f-, 8, d) J
and

21/ \- 1-2/34
=W (1+2(1 - a)) [2k)P/ (ta(flsd)D -0/2)lk (3.4)

From (2.1) and (3.3) we have

[2(1-a. D'=
A'= [ 2 tc(,8,ld) J (3.5)

To evaluate the relative impact on average unit cost of a non-optimal choice of

w, from (A.11) in Appendix A we have

C (W). ( 2 w.K . + (1-a)(w,"] . (3.6)C(w.) 8 + 2(1 - a ) 2 w+ (W-,) (.);

The relationship (3.6), which generalizes (2.7) for GOMA (0, 1, C, E), depends
only on the cost function exponents & and # and is independent of the other cost
coefficients, the level of demand, the market shape, and the distance norm. Thus

it applies to GOMA (a, /, *, *).

From (A.6) in Appendix A, we discover that the ratio of the optimal value of
the average transport cost, given by the second term in (3.2), to the optimal value
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for average facility cost, defined by the first term in (3.2), is

2(1 -

3 
(3.7)

Again, this result is independent of other cost coefficients, the level of demand,

the market shape, and the distance norm, and applies to COMA (a, /0, *, *). A
consequence of (3.7) is that greater degrees of economies-of-scale in facilities (lower

a) and economies-of-distance in transport (lower 0) both lead to a higher share

for transport in the total optimal average cost. The ratio (3.7) has been noted by

Mohring and Williamson [69] for COMA (a, 1, C, E) and GOMA (a, 1, D, M). In

these cases, the ratio may vary from 2 (for a = 0) to 0 (for a = 1).

Since the normalized average distances a(/, s, d) are equivalent to expected

distances for points randomly distributed in a market area, sources that derive ex-
pected distances are useful references for constructing various market area models.

In particular, expected distances have been derived for many problems involving

randomly occurring service demands. Sources containing useful formulae for ex-

pected distances include [20,29,56,59,83].

To evaluate the configuration factors a(/#, s, d) for Euclidean distance with the
additional market shapes, we can apply the following formula to calculate total

transport costs for n-sided regular polygons, where R is defined to be the distance

from the center of the market to the closest point on its perimeter:

2ntD . / 'OardO = 2+11/ 0 dO. (3.8)fe o 2 + Co 0o

Here, of course, square and diamond shapes are equivalent. The integral (3.8) can

be evaluated only for 1 = 1; the resulting values for a(1, s, E) are given in Table 1

for hexagonal (n = 6) and square (n = 4) market areas.

For rectilinear or "Manhattan metric" distance, total transport costs are calcu-

lated for a diamond-shaped market area with sides of length 2R by

4t o 12 o (" + v),dvdu, (3.9)

and for square and circular market areas the upper limits on the integrals are (R, R)

and (R, v"2-u) respectively. The resulting values for u(fl, s, M) are given in

10



TABLE 1

Configuration Factors for Average Transport Costs

Market Distance Configuration factors

shape metric a(6, e, d) a(1, a, d)

C E 2 = 0.376

8

M NA 8 = 0.479

H E NA ( )"' (4 +-3n3) 0.377

M see (3.11) (--) 3 2 (1 + = 0.480

V/- + In (1 + V2) _
D4 E NA 6= 0.383

6

Sa M 2(2- 2 -P) 1 = 0.500(I + fl)(2 +6 2

6 For rectilinear distance, diamond-shaped market areas are squares rotated 450 with respect

to the principal directions of travel, whereas square market areas are aligned with the travel

directions.
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Table 1; for a circular market area, the integral (3.9) can be evaluated only for

For a hexagonal market shape with inner radius R and area 2V3/R2, total trans-

port costs with the Manhattan metric are given by

t {f/  f uv(u + v)Pdvdu + f(u/ rs  - + vdvdu}

+4tD 0 R Io'-/(u + v)Odvdu

- 2tDR2+P [(I + 1)s+0 - 2V1+' - (I + V)22+). (3.10)
/3-7 +('(l + P) (2 + 0)

As in (3.2), we obtain from (3.10)

H, M) 2 -0/2 [(1 + V3)3+0 - 2,r3I+ - (1 + V)2+(3.11)
31+S/4(1 + 3)(2 + 3)

With the information in Table 1, we now may make some inferences about the

sensitivity of optimal decisions and costs to market shape and distance metric, at

least for the case of a = 0 and ( = 1. Observe that the choice of metric has

a more significant effect than the choice of market shape: for the most efficient

combinations, a(1, D, M) is about 25% higher than o(l, C, E). For the Euclidean

metric, there is less than a 2% difference between a(1, C, E) and a(1, D, E); for

the Manhattan metric, the difference is approximately the same between a(1, D,

M) and a(1, H, M). The consequences of these differences for the optimal facility

size calculated via (3.3) are illustrated in Table 2, where the last column gives the

proportionality constant [ (7a]~(3.12)

in (3.3). The largest error in w* that one might obtain by an incorrect choice of

market shape and norm is about 20%. Applying either formula (2.7) or (3.6), this

degree of error implies an increase in unit cost of less than 1%. Although this may

seem small, the increase in unit cost implied by an incorrect choice of market shape

given the correct norm is truly imperceptible.
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TABLE 2

Proportionality Constants for Optimal Facility Sizes

(a=O, =1)

Market Distance Proportionality

shape metric constant (3.12)

C E (97r) 1/3  = 3.046

M ,,(3)2/S 2.593

H E 2V + 3  ) 2/S 3.041
4 + 3 1n 31

M 6v/3 + *) = 2.589

[ 12 + 7 is

DO E( 12 2/3 3.012

M (3/2)2/s 2.621

So M (4) l2/S 2.520

'For rectilinear distance, diamond-shaped market areas are squares rotated 450 with respect

to the principal directions of travel, whereas square market areas are aligned with the travel

directions.
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4. Exploring New Distance Norms

Our analysis thus far has been restricted to two standard distance measures: the

Euclidean and rectilinear norms. Several additional distance measures have been

proposed recently for use in location models; research in this area includes both the

development of new forms of distance norms [77,89,90] and the empirical fitting of

distance functions to data [10,55,61,62,63,92]. We now shall explore how some of

these norms may be incorporated into the General Optimal Market Area model,

and how that model may be used to evaluate the likely impact of selecting such a

new norm. The discussion in the previous section suggests that changing the norm

probably will provide a rather modest improvement in unit costs, of one percent or

less. However, if this improvement costs little and the new norm is accurate and

convenient to use, its selection could be desirable.

The particular norms we shall examine are cases of the "block" norm developed

by Ward and Wendell [90]. Block, or polyhedral, norms are distance measures that

have polygonal contours. The rectilinear, or Manhattan, metric is one example of a

block norm. By using other block norms, we can allow travel in angular directions

different from the strictly right-angle ones permitted by the Manhattan metric.

The first case that we shall consider is the diamond-shaped market area with

travel allowed along 45* diagonals in addition to the horizontal and vertical di-

rections permitted by the Manhattan metric. This corresponds to the "weighted

one-infinity" norm of Ward and Wendell (89]. We shall designate this metric as

"A45," since directions are differentiated by integer multiples of 450 angles. If

(u, v) are the coordinates of a point in the market area, measured from the center,

where u > v > 0, the distance given by the A45 metric is plu + p2v, with p, = 1

and P2 = v2 - 1. This implies that a shortest path is taken from the center to

point (U, v) following the directions permitted. Total transport costs for GOMA
(of, f, D, A45) with sides of length 2R are given by

(R/Vij U ,V2_ R vf2i- u
8tD ]°  (Piu + P2V)/9dvdu + R (PIu + p2 v)/dvdu

-- 22-0/2tDR2 0 1+10 (p)Jt,_l (2p,)2+0 (PI +J' P2) 2+
'
0

-- p,(1 D + f(pi + p2)+P - 2(2p,). .+ P ) . (4.1)

P2 ( + j6)(2 +P)IPiPJ
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If the limit were taken in (4.1) as p, -- P2 = 1, we would obtain the transport costs

for the Manhattan metric. For the A45 metric, with Pi = 1 and p2 = -5 - 1, we

obtain the following configuration factor o(#, D, A45) for use in (3.2) - (3.5):

o(13, D, A45)-= 2~1/2(2 - 20-P)/2)
D, A5) =(4.2)(1 + fl)(2 + fl)(2 - V2-)" 42

For comparison with the results in Table 1, the average distance o(1, D, A45) is

0.402.

The second case we develop is for a hexagonal market area with travel permitted
along directions that parallel the three principal axes of the hexagon; i.e., directions

that intersect at angles of 60° . This metric will be called "A60." For coordinates

(u, v), u > v > 0, measured from the center with a horizontal axis corresponding

to a principal axis of the hexagon and closest to that principal axis, the distance

from the center for the A60 metric is PIU + P2V, with Pi = 1 and P2 = 1/ /. Again,

a shortest path along the allowable directions is implied. For a hexagon with inner

radius R and area 2VR 2, total transport costs for GOMA (a, P, H, A60) are

calculated according to

12tD fr°  Jo (plu + p2v)Odvdu + 2Rl2 u (plu + pv)"dvdu
f f1R/2 0oPVUUL

= (2 (4NAtDR+'g()3

for P, = 1, P2 = I/v/. From (4.3), the configuration factor o(#, H, A60) as in (3.2)

is

o(, H, A60) = 21+P/2 3 -30/4 (4.4)

The average distance o(l, H, A60) is 0.414.

The last case we shall examine is a hexagonal market area with travel permitted

along directions that parallel the three principal axes of the hexagon plus interme-

diate directions that intersect those directions at angles of 300. This will be called

the "A30" metric, and the weights Pl, P2 that give the distance pIu + P2V from the

center to a point (ui, V) I U >v _U 0, measured with respect to a horizontal axis

aligned with a permissible direction, are p, = I and P2 = 2 - V/3. For an inner

radius of R, total transport costs for GOMA (a, fl, H, A30) are

12tD R u (PIU + p2v)Pdvdu = (2-tv/)(1 +f )(2+i) 2) 1 (4.5)
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for Pi = 1, P2 = 2 - vf3. From (4.5) we have

(2~ 3(V/3)( +0/2 '+

o(#, H, A30) = 6(2 - 2. (4.6)

Here the average distance o(1, H, A30) is 0.386, which is close to the average

distances with the Euclidean norm given in Table 1.

To help in assessing the implications of these new norms for facility sizes and

costs, the proportionality constants (3.12) are given in Table 3 for the three cases

represented by (4.2), (4.4), and (4.6), with a = 0 and P = 1. In comparison

with the values in Table 2, facility sizes are larger than those obtained with the

Manhattan metric and closer to those corresponding to the Euclidean metric. For

an example of the cost implications, the difference in facility sizes between GOMA

(0, 1, D, M) and GOMA (0, 1, D, A45) is about 10%. From (2.7) or (3.6), this would

imply an increase in optimal costs of about 0.3% if the solution from the wrong

model were used. Such an estimate provides some guidance as to the amount of

effort that might be justified in determining an appropriate distance norm. In

some applications, estimating distances and costs is complicated by vehicle routing

considerations, and obtaining accurate estimates may be quite difficult [20,66,92].

The three norm-shape combinations developed here are intermediate between

those with Euclidean and Manhattan metrics, and thus may be useful compromise

choices if neither of those metrics seems appropriate. They also have the advan-

tage of providing transport cost expressions that are simple to calculate for fl $ 1,

whereas in some instances the Euclidean and Manhattan metrics are intractable.

Convenience is important. For example, GOMA (a, P, H, A60) has the useful prop-

erty that all points on the perimeter of the hexagon are equidistant from the center.

Market area models used to analyze spatial pricing become quite awkward if points

on the market area perimeter are not equidistant from the center. Economists, who

seem to have had a simultaneous fixation on hexagonal market areas and Euclidean

distance, might have avoided a lengthy controversy over "rounded" hexagons by a

theoretically non-significant shift from the Euclidean to the A60 metric.

5. Approximating Discrete Location Models

An important use of market area models is as an approximation to large discrete

location problems, which often are represented by integer programming models.
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This idea has been developed fully by Geoffrion [36,37], who emphasizes the insights

that can be obtained from the simpler models and the value of using the two types

of models in combination. Similar views of the complementary relationship between

continuous and discrete spatial models have been expressed by Beckmann and Puu

18, pp. 254-255] and Hall [461.

Here we provide another example of the correspondence of results produced

by the market area model to those from an integer programming model. The

integer programming results are for the 100 x 100 problem in [311 which has 100

demand and potential facility locations. Each location has one unit of demand,

and distances between all locations are Euclidean. Since total demand is 100, this

suggests calculating a facility size with the market area model and then dividing

that size into 100 to estimate the number of facilities required.

There is no reason here to select a market area model more complicated than

the simplest one, GOMA (0, 1, C, E), and so we use (2.3) to calculate the facility

size. The estimated number of facilities is provided by

-= 100
N - -= Is  (5.1)11W*

where K is a constant that depends on t and D, parameters that we shall not vary

here. The relationship (5.1) is essentially the same as that used by Geoffrion 136,371
and Leamer (58]; it hypothesizes that doubling the fixed charge k will lead to a 37%

decrease in the number of facilities.

There are many ways to estimate the constant K; we shall use a break-even

approach that recognizes the continuous nature of N in (5.1). From Erlenkotter

[31, p. 1007], we have a solution with four facilities at k = 8000 having total

transportation costs of 55,889; and a solution with five facilities at k = 7000 with

transportation costs of 48,720. For indifference between these two solutions, the

breakeven fixed charge kb is determined by

48,720 + 5kb = 55,889 + 4kb

which yields kb = 7169. This value of kb corresponds to an estimate of N = 4.5 in

(5.1), and thus (5.1) becomes

N _ 1673k-2 /. (5.2)

We now use (5.2) to estimate the number of facilities required, and compare the

estimates in Table 4 with the actual integer programming results. If the estimates
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TABLE 3

Proportionality Constants for Optimal Facility Sizes

(a =0, (=1)

Market Distance Proportionality

shape metric constant (3.12)

D A45 [12(vf - 1)12/3 = 2.913

H A60 2 -1/s3 e/6 = 2.860

H A30 2(2 - V3)2l33 7/6 = 2.995

TABLE 4

Estimated Number of Facilities for (100 x 100) Location Problem

Fixed Estimated number Optimal number

cost, k of facilities, of facilities, N*

1000 16.73 17

2000 10.54 12

3000 8.04 7

4000 6.64 7

5000 5.72 6

6000 5.07 5

7000 4.57 5

8000 4.18 4
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N are rounded to the nearest integer, we see that the correspondence is amazingly

close, differing by a single facility in just two cases: k = 2000 and k = 3000. The

fit would be even closer if the relationship (5.1) were fitted to average, rather than

extreme, data values.

6. Conclusion

The market area model presented here is important to spatial analysis. Much

as the familiar EOQ model expresses the fundamental tradeoff between economies

from larger orders and increases in inventory holding costs, the market area model

portrays the equally fundamental tradeoff between economies-of-scale from larger

facilities and the higher costs of transport to more distant markets. As we have

shown, it is a model that has been rediscovered and rederived a number of times.

In view of its importance and long history, the apparent obscurity of this model

seems quite puzzling.

The more general form of the market area model given here encompasses both

economies-of-scale in facility costs and economies-of-distance in transport costs. A
variety of market shape and distance norm combinations are accommodated within

the general model. Even in this extended form, the COMA model preserves all the

useful properties of the simplest model: compact closed-form expressions for the

optimal facility size and the optimal unit average cost, and convenient sensitivity

relationships for the impact on costs of non-optimal decisions.

We have used the model to explore the implications of some new distance mea-

sures and to approximate a large integer programming location model. Such a

small, convenient model seems an ideal choice as a means for performing the kinds

of rough cost-benefit analysis needed to manage more complex locational modeling

exercises. As Berens and K5rling [10] have pointed out, even the selection of a

distance measure is subject to such cost-benefit considerations. We believe that

much remains to be discovered about the potential for this simple model as a part

of the overall modeling process.
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Appendix A. General Solution Derivation

Consider the following two-term cost function:

C(w) = cIw' + C2w', (A.1)

where a, < 0 and a2 > 0, and c1 , C2 > 0. We may apply the most elementary

concepts from geometric programming, as developed in Wilde and Beightler [97,

pp. 28-30], to derive the cost-minimilzing solution w° to (A.1) and also several

useful properties of this solution.

The proportion for each cost term in (A.1) in the optimal solution is given by

C(w) =v, j = 1,2. (A.2)

Hence

v* +4 V- 1. (A.3)

Differentiating in (A.1), we have the necessary condition

X -(w 0 = a1cw* 6- + a2c2w ° 2- 1 .  (A.4)

dw

Substituting cjw, ' = v;C(w*) from (A.2) into (A.4), we have

C(W*0

W* [alvt4 + a2Vti=]

which implies that

ajvi + a2V = 0. (A.5)

Solving (A.3) and (A.5) for the v! yields

a2 • ; -a, (A.6)a 2 - a, a2 -a,*

Hence the proportions of the two cost terms in (A.1) in the optimal solution depend

only upon the exponents aj, and not on the cj.

To calculate the optimal costs, note that (A.3) implies

C(w ° ) = C(w)";C(w°) "; . (A.7)
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Substituting into (A.7) from (A.2) gives

C(w) = [ "1 " o 1

= LJj]D FI;. .I.+.J

and hence from (A.5) we have -

C(W*) = [I]IIV [!2] V

Substituting the solution for the v! from (A.6) and simplifying yields

-( . (- '-1 " '  8
C(w') = (a2 - a,) [ a2 a,1)] (A.8)

To obtain the value for w, observe from (A.2) that

C(w') = C" = (A.9)

Substituting the solution for the v* from (A.6) into (A.9) and solving for w" gives

W = I-"' I . (A.1O)

It now is straightforward to derive from (A.1), (A.9), and (A.6) the cost sensi-

tivity relationship
c(,,) W [ ,,,a- """

S 2 a( ) - (a, (A.11)
C(w') a2 -a, I w' kw'/.

Hence the relative sensitivity of total costs to a non-optimal choice of w depends

only upon the exponents aj and the amount of deviation relative to tw*. Expressions

for evaluating the sensitivity of total costs to misestimates in the cost coefficients

cy can be obtained by substituting (A.10) into (A.11). For specific instances of the

general formula (A.11), see Geoffrion [37, p. 107], Hadley and Whitin [44, p. 36],

and Wagner [88, p. 818].
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Appendix B. Price-Sensitive Demands

In this Appendix we explore the relationship of the unit-cost-minimizing mar-

ket area model, which assumes perfectly inelastic demands, to models with price-

sensitive demands. First, a "typical" model with price-sensitive demands is defined,

and we derive a standard equilibrium solution for this model. Then we show how

price-sensitive demands may be incorporated into the unit-cost-minimizing model
and compare the solution obtained from that model with the equilibrium solution.

We shall restrict our investigation to the GOMA (0, 1, D, M) model since this
model has the property that all boundary points are equidistant from the market
center, and the complications entailed by non-equidistant boundary points in other

models are avoided (see, e. g., [43,50,70,71]).

To introduce price-sensitive demand, we modify assumption (a) to

(a) Demand is distributed uniformly over an infinite plain with density a - bp per
unit area, where a, b > 0 and p is the effective delivered price at the demand

point.

The assumption of such a linear demand function is standard in models of equilib-

rium spatial pricing.

From the various forms of spatial competition that have been considered, we

shall examine the one postulated by L6sch [16,18,25,60,65,67,68]. "L6schian" spa-
tial equilibrium requires assumption (f) to be altered to:

(f) Subject to assumptions (a') - (e'), each market area consists of a single firm

that sets price so as to maximize profits. Free competitive entry of new firms

then squeezes the market area for each firm to the minimum size that will

yield non-negative profits.

We shall examine two common pricing policies: mill pricing, in which the firm

charges a price p,. at its location of production and consumers pay for transporta-

tion; and uniform delivered pricing, in which the firm absorbs transportation costs

and charges a delivered price pd to all consumers.

For convenience, here we define R as the distance from the center to a vertex
of the diamond-shaped market area; thus the area of the market is 2R2 and, with
distance measured by the "Manhattan metric," all points on the perimeter of the

22



. .... I I ! _1 I * i i - t , J

market are at distance R from the center. For / - 1 and Manhattan metric

distance, the total quantity sold under mill pricing is

w= = 4 f 4[a - b(p,, + t(u + v))Idvdu,

which yields

Firm total profits are given by

Y(pm,R) = (p. - c)w. - k. (B.2)

Substituting (B.1) into (B.2) and setting

aY (p;, R) -0

yields the profit-maximizing mill price

1[a +c- 2tR. (B.3)

Substituting (B.3) into (B.2) gives the maximum firm profits

Y pR= a - be - 2 btR ) 2- k. (B.A),

Competition drives Y(p*, R) to zero, and the equilibrium market radius R, is

determined from (B.4) by

R 2 22b a - be - 2btR) k. (B.5)

Since competition is claimed to produce the densest packing of firms subject to

the non-negativity of firm profits, we define R, as the smallest positive root of the

quartic (B.5):

R 3 a- be- (a- bc2 _ Vf2_bt \1/21(.64b 3 (s.6)

Similar expressions have been derived by Mulligan 170] for various market shapes

assuming Euclidean distance.

Under uniform delivered pricing, the total quantity sold by the firm is

Wd = 2R 2(a - bPd). (B.7)
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To calculate firm profits, we must evaluate total transport costs:

4 'Rf o-"(a - bp,)t(u + v)dvdu = 4t(a - bpd)R-.

Firm total profits are given by

Y(pd, R) = (Pd - c)Wd - 4t(a - bpd)R -- k. (B.8)

Substituting (B.7) into (B.8) and setting

aY(p*d,R) -o

yields the profit-maximizing uniform delivered price

Pd= 2 b + tR] . (B.9)

Substituting (B.9) into (B.8) yields the same expression for maximum firm profits

given in (B.4), corresponding to a result derived by Beckmann and Ingene [7] and

Beckmann [5]. Hence the equilibrium market area will be the same under either

mill pricing or uniform delivered pricing, as observed by Mulligan [711 for several

market shapes assuming Euclidean distance.

In order to introduce price-sensitive demands into the unit-cost-minimizing mar-

ket area model, we shall adopt an institutional setting different from the one as-

sumed in the above equilibrium models. There is substantial evidence that firms

consider much more than short-run profit maximization in planning their invest-

ment, output, and pricing decisions. Weston [95] has mentioned in particular a

concern with lowering costs and "enlarging the market." Firms are likely to adopt

strategies to reduce the possibility that potential competitors will enter their mar-

ket [27,51]. This suggests the firm objective we shall adopt here: to set an "entry-

deterring" price at the lowest level possible, subject to a non-negativity constraint

on profits. We emphasize that this analysis is an ex ante one intended to estab-

lish facility capacity and the structure of costs; actual ex post pricing and output

decisions very likely could be adjusted according to shorter-run considerations.

We also shall adopt a strategy of uniform delivered pricing. Although this type

of price policy is regarded as discriminatory, since prices do not reflect the costs of

service, it is quite common among firms [74,76,78].
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The problem of setting the entry-deterring price p, subject to non-negativity of

firm profits Y (p, w, D), is defined as

Minimize p (B.10)

p,D > 0
w>0

subject to Y(p,w,D) > 0 (B.11)

D = a - bp. (B.12)

Profits are defined as

Y(p,w,D) = (p-c-C(w,D))w

where c + C(w, D) is the unit average total cost with C(w, D) defined as in (3.2),

introducing D as a variable.

Substituting from (B.12) for p into (B.10) and (B.11) yields the equivalent

problem

Maximize D (B.13)
a > D > 0 _..._

w>0

subject to aD -C(w,D) w >0. (B.14)

Observe that the constraint (B.14) must hold with equality at the optimum, since

otherwise we would attempt to set D = a, which would cause the constraint to be

violated. This implies that

D* = a - bc + C(w*,D*)] (B.15)

which in turn requires that C(w*, D*) be minimal with respect to w; i.e.

aC(w',D*) (B.16)
aw

Given D, the solution indicated by (B.16) may be obtained from (3.4). Also, from

(B.12) and (B.15) we have

p" =c + C(w*,D*). (B.17)

25



The solution given here, as determined by (B.15) and (B.16), maximizes unit
demand D and minimizes unit cost C(w*, D*). This form of solution corresponds
to the statement by Beckmann [2, p. 45] that for a uniform delivered price "The

social optimum is then achieved by ... the minimization of unit cost." However,

Beckmann did not indicate how the level of demand was to be chosen for the

minimization of cost.

Analytical solution of (B.15) and (B.16) for w* and D" does not seem possible,
but the following successive approximations approach converges monotonically and
usually rapidly to the largest solution D" > 0, if such a solution exists:

1. Set D0 - a - bc; t = 0.

2. D,+, = a - b + C(w,D,).

3. If Dt+, has converged to D, stop.
Otherwise t +-- t + 1 and return to Step 2.

The solution C(w, De) in Step 2 is obtained from (3.4). Monotonicity of con-
vergence results from D* < Do = a - be; the observation that C(w*, D) is strictly

decreasing in D in (3.4); and the strictly decreasing nature of D = a-b[c+C(w*, D)]
in C(w*, D). A second-order approach, such as Newton's method, would provide
even more rapid convergence.

To illustrate the solution process for price-sensitive demands, we will calculate
a solution for GOMA (0, 1, D, M) using the following data from Hartwick 150) and
Mulligan [70]: a = 25, b = 5, t= 1, c = 0.6, k = 5. For this model, we have

from (3.3)

ta(l, D, M)J
and from (3.4)

C(w*,D) = 3~ [(2k)1/2toa(l, D, M)D-1/2 2/3

where a(1, D, M) = V//3 from Table 1. Results from the successive approxima-

tions approach are as follows:
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Price, Demand, Cost, Size,

t P1  De C(wi, Dj) we

0 0.600 22.00 0.6986 21.47

1 1.299 18.51 0.7400 20.27

2 1.340 18.30 0.7428 20.19

3 1.343 18.29 0.7430 20.19

The optimal market radius R" = /w-/2D = C(w',D')/t = 0.7430.

For contrast, the solution for the equilibrium model yields via (B.6) an equilib-

rium market radius R, of 0.3388. This implies a uniform delivered price of 2.913,

a demand density D of 10.44, an average unit cost (excluding the proportional

amount c) of 2.313, and a facility size of 2.396. Clearly such small, high-cost

producers would stand little competitive chance against the large, efficient firm

generated by the GOMA (0, 1, D, M) model. Even with a relatively insensitive

cost model, facility size differentials that approach an order of magnitude make a

noticeable difference!
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